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Statistical Inference and Entropy 
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We construct an entropy function such that statistical inference with respect 
to a partial measurement and a given a priori distribution is characterized 
by maximal entropy. 
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1. INTRODUCTION 

We discuss the  re la t ion between stat is t ical  inference and  en t ropy  for a 
system represented  by  a yon N e u m a n n  a lgebra  93 o f  bounded  opera to rs  on a 
separable  Hi lbe r t  space. The Hermi t i an  elements  o f  9-1 are  in terpre ted  as the 
observables  o f  the  system and the normal  states on 9~ represent  physical  
in format ion .  A n  a pr ior i  d is t r ibut ion  on 93 is a no rma l  state reflecting the 
in fo rma t ion  avai lable  p r io r  to any actual  measurement ;  it  contains  the macro -  
scopic in fo rmat ion  abou t  the system. A par t ia l  measurement  is the ou tcome 
o f  a microscopic  measurement  on a subsys tem of  9.1; the subsystem is thus 
represented  by  a yon N e u m a n n  subalgebra  ~ o f  93. The p rob lem of  stat ist ical  
inference is to de te rmine  the mos t  l ikely physical  in fo rmat ion  abou t  the 
system 93 condi t ioned  on a pa r t i a l  measurement  on ~3 and a given a pr ior i  
d i s t r ibu t ion  v on 93; this p rocedure  is called (~3, v) inference. Appl ica t ions  to 
p rob lems  in classical and  quan tum physics may  be found  in Ref. 1. In  this 
paper  we const ruct  the en t ropy  funct ion tha t  character izes  the (~ ,  v) inference 
as a m a x i m u m  en t ropy  state. 

2. PARTIAL M E A S U R E M E N T  A N D  (~3. v)  I N F E R E N C E  

Let  ~ be a v o n  N e u m a n n  a lgebra  o f  bounded  opera tors  on a separable  
Hi lbe r t  space 9. F ( ~ )  s tands for  the  fai thful  no rma l  states o n  ~ ,  ~+  for  the 
posi t ive  elements  in 2l, and  J(;q) = {T~ ~+  ; 3T -1 ~ ~+}. 
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Definition 2.1. Let % ~b e F(~) and A,/~ > 0. ~o is (A,/~) comparable 
with ~ if ~o ~< ~ and ~b ~</~p. 

Lamina  2.1. Let ~o be (A,/~) comparable with ft. Then there is a unique 
T ~ J(~) such that ~o(N) = ~(TNT),  ~(N) = ~o(T- ~NT-  ~), VN ~ ~, and 
I]Tt? ~< ;~, l iT-ti t  ~ < ~- 

Proof. ~ <~ A~b implies ~ t> 1 and according to Ref. 2 there is a unique 
//1 ~ ~+ such that ~(N) = (A~b)(H~NH~), 0 ~<//1 ~< 1. With Tx = V'-M-/~, we 
get ~(N) = ~(T~NTO, T I ~ + ,  0 <~ T~ <~ ~ and [[TtI[ ~ ~< A. Similarly, 

~</~p implies the unique existence of  Tz ~ ~+ such that ~(N) = ~(TzNT2), 
I[T2II z ~< u. We now show tha t / '1  and Tz are invertible. Suppose they are 
not invertible; then they have nontrivial null spaces. Let P~, Pz be the pro- 
jectors onto these subspaces. Since 7"1, Tz ~ ~+ ,  it follows that P~, Pz ~ ~+ .  
Then ~0(P~)= ~(T~PIT~)= 0 and ~(P~)=  9(TzPzT~)= 0. This, however, 
contradicts the faithfulness of ~o and ~b, meaning that T~ and 7"2 are invertible. 
Let now 

I"1 = x dE~(x), T~ = x dE2(x) 

be the spectral representations of  7"1 and T~. 
From 

we get 
(lth)~o ~< ~ and (1//~)~b ~< ~o 

(1/~)~(E2(y~)) < ~(E~(y2)) = ~(7"~E2(y~)T~) 

= x 2 d~(edx)e~(y2) )  

fo ~2 x 2 d~(E~.(x)) ~ y~.2~(E~(y~)) 

Similarly, (1/~)~(Et(yl))~< y12~(EI(y~)). This shows that the spectra of  
Tt and T~ are bounded away from zero and hence Ti- ~ and T2- ~ are bounded. 
Then ~( r i -~Nr i  -~) = g,(N) and ~(T~N.T~ ~) = ~o(N) and the uniqueness of  
/ ' i  and T2 implies/'1 = Ts ~ and T~ = Ti-~. 

The concept of  (~3, v) inference involves two yon Neumann algebras 
~.1, ~3 with ~3 c ~1 = ~3(~), an a priori state v on ~1, and a state w~ on ~3 
reflecting the outcome of  a partial measurement. Without loss of information 
we assume v s F(~I) and w~ e F(~),  thus avoiding redundant events. 

Definition 2.2. Let ~1,~3, v, w~ be given such that the restriction 
vta~ ofv  to ~3 is (A, ~) comparable with w~. According to Lemma 2.1, there is a 
unique T e J (~)  with 

w~(B) = vba(TBT ) = v(TBT), VB ~ 
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The (~3, v) inference w of w~ is then defined by 

w(A) = v(TAT), VA ~ 

Remark 2.1. The (~3, v) coarse-graining w of w~ has the following 
properties: 

(a) w E F(~t). 
(b) w is an extension of w~. 
(c) If  w~ = v]~, then w = v. 
(d) If~3 = {~.1), then w = v. 

Remark 2.2. (~, v) inference on the basis of global a priori information 
and partial microscopic measurement is compatible with the information 
contained in w~ [property (b)] and such that the a priori state v is recovered if 
either the partial information coincides with the information already con- 
tained in v [property (c)] or if no partial measurement is made [property (d)]. 

3. THE ENTROPY CHARACTERIZ ING ( ~ , v )  INFERENCE 

Let ~ be a v o n  Neumann algebra as before and v e F(~) an arbitrary a 
priori state. Let 

J . (~)  = { r z s ( ~ ) ;  v ( r  ~) = 1) 

and 

ro (a )  = {w e g (~ ) ;  w(A) = v (TAr) ,  A e ~, r e J~(a)} 

We would like to construct a relative entropy function Hv on Jv(~) with the 
following property: Let (~3, w~) be an arbitrary partial measurement and 
To ~ J(~3) correspond to the (~3, v) inference of w~. Under variations com- 
patible with the partial measurement, Hv should be stationary at To. 

Guided by existing information-theoretic entropy functions, we assume 
for Hv the general form 

/-/v(T) = v(r(~r)) 

with F(T) norm-analytic around any ~. 1, A # 0. 

Theorem 3.1. Let v ~ F(gA) be a nontracial a priori state on 9d (non- 
Abelian) and (~3, w.~) an arbitrary partial measurement with To ~J(~)  
corresponding to the (~3, v) inference. 
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Let T(E) be a curve in J~(9.1) analytic at T ( 0 ) =  To and F ( T ) =  

Y..,~o C,~(T - A)" norm-analytic at h-1, h r 0. For variations compatible 
with the partial measurement, i.e., 

(d /&)v(r(e)Br(~)) l r  = O, VB ~ 

the condition 
(d /&)U~(r (~) )  = 0 

implies 

C ~ = 0 ,  n~>3  

Proof.  Let T(~) = To + eK + O(e2). Then the compatibility condition 
reads 

(d/d , )v(T( , )BT(r  = o = v (ToBK + KBTo) = O, VB ~ ~3 

In particular, for B = Toa(To - ,~)m, m >t O, we get 

v((To - h)mK + K(To - h) m) = O, m >1 0 

The extremal property of Hv at To implies 

d 
d, H,(T(,))],=0 = ~ C d - . ~ o  " d ~  o ( ( T ( O  - ~)")1~=o 

= c~  ~ v((ro - a) ~ - z - l K ( r o  - a)z) = o 
n = l  / = 0  

Using the compatibility condition, we get 
n - - 2  

C~v~ = 0 where v, = ~. v((To - )0 n-Z- 1K(To - It) l) 
n=3 I=i 

Since these relations have to hold for any partial measurement, we choose 
= {P}", where P is an arbitrary nontrivial projector. Then, for suitable 

real ;L 

T o -  h.1 = aP + b(1 - P )  

for some real a, b r O. 
The compatibility condition implies 

v ( K P  + P K )  = O, v(K)  = 0 

and the extremal property then reads 
r t - -2  

v,, = ~ v([a'~-~-~P + b~-~-~(1 - P ) ] K [ d P  + bZ(1 - P)]) 
1 = 1  

7 1 - 2  

= v ( P / c e )  ~ (a ~-1 - 2 a - - ~ - l b  ' + b ~-~) 
l = l  

i , , - 2  f 
= v(PKP)[ (n  - 2)(a ~-~ + b ~-~) - 2 ~ a'~-Z-~b z] 

I = 1  
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or, with x = a/b, 

v, = v(PKP)b"-  1 [(n - 2)(x" 1 

L 

Then 

with 

._2] 
+ 1) - 2 ~=~ x ~ 

ao = ~_, (n - 2)C,b "-1 
. = 3  

a ~ = ( k -  1)Ck+lb ~ - 2  ~ C,b "-a, k >>. 1 
. = k + 2  

Varying w~ implies that we can assume x to range over a compact set in R. 
Therefore ak = 0, k >t 0, or equivalently C, = 0, n 1> 3. 

Remark 3. I. Since Co, C1, C~ are arbitrary, it follows for v nontracial 
that 

H~(T) = Co + C l v ( T -  A) + C 2 v ( [ T -  A] 2) = ao + alv(T) 

is the most general entropy function. On the other hand, if v is tracial, all C, 
are arbitrary. The class of admissible entropy functions is then much larger 
and contains, in particular, the standard form of the entropy. 

Def in i t ion  3.1. The normalized relative entropy function defined on 
J~(gA) by 

H~(T) = v(T) 

is called the v-entropy. 

T h e o r e m  3.2. Let (~3, w~) be any partialmeasurement andJ,(~l, ~,  w~) = 
{T~J~(9.I); v ( T B T ) =  w~(B), VB ~ ~3} the T's compatible with the partial 
measurement. Then the v-entropy H,(T)  = v(T) restricted to J,(~, ~, w~) 
has a unique absolute maximum at To e J(~3) corresponding to the (~3, v) 
inference of w~. 

Proof. Let T ~ J~(~, ~3, w~). Then 

v(TBT) = v(ToBTo) = w~(B) 

implies, for B = Tg ~ e J(~3), 

v(TTg lT) = v(To) 

• C,v,  = v(PKP) ~ akx k = 0 
~,=3 k=O 
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With 

A = To *, 

the Schwarz inequality reads 

o r  
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B = T ~ T ,  A B  = T 

lv(Z)l  = = lv(AB)I  = ~< v(AA*)v(B*a) 

= v(To)v(TTolT) 

= [v(To)] ~ 

v(T) <. V(ro) 

Since v is faithful, the equality holds if B = hA or T = AT0, and from 
v(T  2) = v(To 2) = 1 and T, To positive it follows that T = To. 

4. E X A M P L E  

The simplest nontrivial illustration of a (~3, v) inference is the quantum 
mechanical single-spin system. In this case ~ = ~3(~3) and ~3 is two-dimen- 
sional. I f  the system is placed into a magnetic field in the 3-direction, the 
a priori state v on ~ is the Gibbs state, which has the general form 

v f A )  = ~-(VA), v = 3,,0 + �89 

where ~- is the trace, oo and o~ are the Pauli matrices, and V is the density 
matrix corresponding to v. Suppose that the partial measurement consists 
in measuring the 1-component of the spin: 

w ~ ( ~ l )  = b 

The measured subalgebra ~ = {or1}" consists of the projectors 

~ = { 0 , P ,  1 - P ,  1}, P = �89 + � 8 9  

and w~ assumes on ~ the values {0, 3(1 + b), 3(I - b), 1}. For To ~J(~3) 
one obtains 

w~(P)  ~'2 [b-O---~P-)] ( l - P )  T o =  [ v -b-~]  P +  w ~ ( 1 - - P )  ~'2 

= 3[(1 + b) 112 + (1 - b)~/21% + 3[(1 + b) ~t2 - (1 - b)V2]vl 

and the (~, v) inference Wo of  w~ is 

wo(A) = ~'(WoA), Wo = ToVTo = �89 + �89 + �89 - b2)Z/2cr3 
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For  a general T ~ J~(~l, ~3, w~) we have 

T V T  = W = ~z~o + �89 + �89 + �89 

and it can be verified that within this class of  T 's  the entropy H~(T) = v(T) 
has a unique maximum at To. 

5. D ISCUSSION 

Within the f ramework of  inference {9.1, v, ~3, w,~; v nontracial} we have 
constructed a unique entropy function characterizing the coarse-grained state 
as the maximum entropy state. 

I f  ~t = ~3(g) and v the trace ~-, then every w ~ F(~) can be written as 
w(A) = r (WA) .  In this case our entropy is 

H~(T) = T(r)  = ~'(V-W) 

and differs from the standard entropy 

/ ~ ( W )  = - -T(WIog W) 

For  our inference they are, however, equivalent since they lead to the same 
maximum entropy states. On the other hand, the straightforward extension (3) 

ITIv(T) = - v ( r  2 log T ~) 

of  the standard entropy to the case where v is nontracial does not characterize 
(~3, v) inference. (4) 
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