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Statistical Inference and Entropy

Jean-Paul Marchand® and Walter Wyss?
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We construct an entropy function such that statistical inference with respect
to a partial measurement and a given a priori distribution is characterized
by maximal entropy.
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1. INTRODUCTION

We discuss the relation between statistical inference and entropy for a
system represented by a von Neumann algebra 2 of bounded operators on a
separable Hilbert space. The Hermitian elements of 2 are interpreted as the
observables of the system and the normal states on 2 represent physical
information. An a priori distribution on % is a normal state reflecting the
information available prior to any actual measurement; it contains the macro-
scopic information about the system. A partial measurement is the outcome
of a microscopic measurement on a subsystem of 2(; the subsystem is thus
represented by a von Neumann subalgebra B of %. The problem of statistical
inference is to determine the most likely physical information about the
system ¥ conditioned on a partial measurement on B and a given a priori
distribution v on 2; this procedure is called (B, v) inference. Applications to
problems in classical and quantum physics may be found in Ref. 1. In this
paper we construct the entropy function that characterizes the (3, ») inference
as a maximum entropy state.

2. PARTIAL MEASUREMENT AND ('8, v) INFERENCE

Let & be a von Neumann algebra of bounded operators on a separable
Hilbert space 9. F(®) stands for the faithful normal states on R, R, for the
positive elements in &, and J(R) = {Te R, ;IT e R, }.
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Definition 2.1. Let ¢, & F(R) and A\, p > 0. ¢ is (A, u) comparable
with  if o < M and ¢ < pe.

Lemma 2.1. Let ¢ be (A, p) comparable with . Then there is a unique
TeJ(®) such that ¢(N) = $(TNT), $(N) = (T *NT™ 1), YNe, and
1712 < A T7® < o

Proof. ¢ < X implies A > 1 and according to Ref. 2 there is a unique
H, € %, such that o(N) = (W)H,NH,),0 < H, < 1. With Ty = VAH,, we
get o(N) = W(TLNTY), Ty eN,, 0 < T3 < VX and [|T3]? < A Similarly,
¥ < pe implies the unique existence of 7, € N, such that Y(N) = e(TLNTy),
T2 < . We now show that T, and T are invertible. Suppose they are
not invertible; then they have nontrivial null spaces. Let P;, P, be the pro-
jectors onto these subspaces. Since 77y, T, € N, , it follows that Py, P, e A, .
Then ¢(Py) = (TP Ty) = 0 and $(Py) = ¢(ToP;Ts) = 0. This, however,
contradicts the faithfulness of ¢ and ¢, meaning that T; and T, are invertible.
Let now

T, = fm x dE;(x), Ty = f x dE.(x)
4] L]

be the spectral representations of T and 7.
From

AN <y and (Ap<eo
we get

(UNGHEs(a)) < $(Ea(r2)) = o(ToEoya)Ty)
= [ # dBE)

- fo " %2 dp(Ea(x) < yop(Ea(y2)

Similarly, (1/p)(Ei(31)) < y:%(Ei(y1)). This shows that the spectra of
T, and T, are bounded away from zero and hence 77 * and 75 * are bounded.
Then o(T7INTTY) = $(N) and (T *NT5 ') = o(N) and the uniqueness of
T, and T, implies T; = T3 * and T, = T7 L.

The concept of (B, v) inference involves two von Neumann algebras
A, B with B < A < B(H), an a priori state v on %, and a state wy on B
reflecting the outcome of a partial measurement. Without loss of information
we assume v € F(2) and wg € F(B), thus avoiding redundant events.

Definition 2.2. Let 9, B, », wy be given such that the restriction
vl of v to Bis (A, p) comparable with wg. According to Lemma 2.1, thereis a
unique T eJ(B) with

wa(B) = v|a(TBT) = v(TBT), VYBed
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The (B, v) inference w of wg is then defined by
w(d) = v(TAT), VAed

Remark 2.71. The (B, v) coarse-graining w of wg has the following
properties:

(a) weF®%).

(b) wis an extension of wg.
() If wg = v|g, then w = ».
(d) If8 ={A-1}, then w = v.

Remark 2.2. (B, v) inference on the basis of global a priori information
and partial microscopic measurement is compatible with the information
contained in wy [property (b)] and such that the a priori state v is recovered if
either the partial information coincides with the information already con-
tained in v [property (c)] or if no partial measurement is made [property (d}].

3. THE ENTROPY CHARACTERIZING (B, v) INFERENCE

Let 2 be a von Neumann algebra as before and v € F(2) an arbitrary a
priori state. Let

Jo(A) = {TeJ@);v(T?) = 1}
and
F () = {we FA); w(d) = o(TAT), A €, TeJ ()}

We would like to construct a relative entropy function H, on J(¥) with the
following property: Let (B, wy) be an arbitrary partial measurement and
T, € J(B) correspond to the (B, v) inference of wy. Under variations com-
patible with the partial measurement, H, should be stationary at Ty,

Guided by existing information-theoretic entropy functions, we assume
for H, the general form

H(T) = o(F(T))
with F(T) norm-analytic around any A-1, A 3 0.

Theorem 3.1. Let v € F() be a nontracial a priori state on 2 (non-
Abelian) and (B, wy) an arbitrary partial measurement with T, € J(B)
corresponding to the (B, v) inference.
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Let T(e) be a curve in J () analytic at T(0) = T, and F(T) =
Sneo C(T — A)® norm-analytic at A-1, A # 0. For variations compatible
with the partial measurement, i.e.,

(d]de)v(T(€)BT(e))|c=o = O, VBe®
the condition
(d[de)H,(T(e)) = 0
implies
C, =0, nz3
Proof. Let T(e) = Ty + €K + O(e?). Then the compatibility condition
reads
(d[de)o(T(€)BT (€))|c=o = v(ToBK + KBT,) = 0, VBe®
In particular, for B = T3 4T, — )™, m = 0, we get
o((To — V)"K + KT, — )™ =0, mz=0
The extremal property of H, at T, implies

4 H(T@eco = 2. Co D o(TE) = Weco
€S o(Ty NP K Ty = W) = 0

nzo
[+ +]
Using the compatibility condition, we get

n—2

D G, =0 where v,= > o((To — V"' K(Tp — N)
n=3

i=1
Since these relations have to hold for any partial measurement, we choose
B = {P}", where P is an arbitrary nontrivial projector. Then, for suitable
real A,
To — A1 =aP + b(l1 — P)

for some real a, b # 0.

The compatibility condition implies

v(KP + PK) = 0, K)=0

and the extremal property then reads

S ofar 1P + Y1 — P[P + B(L — P)))

1=1

n—2
= o(PKP) D (a@*' = 2a" " 1H + b
[=1

Up

| n-2 |

WPKP)(n — 2@ + b — 2 > @]
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or, with x = a/b,

v, = v(PKP)b”‘l[(n -2+ 1) -2 ?ij’]
Then

i C,v, = v(PKP) i ax* =0
n=3 k=0

with

!

25}

> (n = Chr
n=3

ay=(k -~ DCeiib* =2 > Cb*Y,  k>1

n=k+2
Varying wg implies that we can assume x to range over a compact set in R.
Therefore a, = 0, k > 0, or equivalently C, = 0, n > 3.
Remark 3.7. Since C,, C;, C, are arbitrary, it follows for » nontracial
that
HD(T) = Cg + Clv(T - /\) + CzU([T - )\]2) = ao + alv(T)

is the most general entropy function. On the other hand, if v is tracial, all C,
are arbitrary. The class of admissible entropy functions is then much larger
and contains, in particular, the standard form of the entropy.

Definition 3.1. The normalized relative entropy function defined on
Jo(%) by

H(T) = o(T)

is called the v-entropy.

Theorem 3.2. Let (B, wy) beany partial measurementand J (%, B, wy) =
{TeJ(¥); (TBT) = wy(B), YBe B} the T’s compatible with the partial
measurement. Then the v-entropy H,(T) = v(T) restricted to J(¥, B, wy)
has a unique absolute maximum at 7, € J(B) corresponding to the (B, v)
inference of wg.

Proof. Let T €J(, B, wg). Then
o(TBT) = v(ToBT,) = wa(B)
implies, for B = T4 € J(B),
v(TT5'T) = v(To)



354 Jean-Paul Marchand and Walter Wyss

With
A=T¢  B=Ts*T, AB=T
the Schwarz inequality reads
o(T)|* = [o(4B)|* < (AA*)o(B*B)
= o(T)(TT;*T)
= [Tl
or
o(T) < o(To)

Since v is faithful, the equality holds if B = A4 or T = AT,, and from
v(T?) = o(T,?) = 1 and T, T, positive it follows that 7 = T,,.

4. EXAMPLE

The simplest nontrivial illustration of a (B, v) inference is the quantum
mechanical single-spin system. In this case % = B(9) and $ is two-dimen-
sional. If the system is placed into a magnetic field in the 3-direction, the
a priori state v on ¥ is the Gibbs state, which has the general form

v(4) = +(VA), v = %oy + 3a0;

where = is the trace, o, and o, are the Pauli matrices, and V is the density
matrix corresponding to ». Suppose that the partial measurement consists
in measuring the 1-component of the spin:

wa(oy) = b
The measured subalgebra 8 = {o,}" consists of the projectors
%={09P31"'P91}9 P=%00+%0’1

and wg assumes on B the values {0, 3(1 + 8), (1 — b), 1}. For T, eJ(®)
one obtains

e

= 31+ B2 + (1~ 5o + 4[(1 + B2 — (1 — 5o,

and the (3B, v) inference w, of wgyp is

wo(4) = 7(Wod), Wo = ToVT, = 400 + 3boy + $a(l — b0y
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For a general T'e J (¥, B, wg) we have
TVT = W = %o, + 3boy + §Waos + W0y

and it can be verified that within this class of T”s the entropy H(T) = «(T)
has a unique maximum at 7.

5. DISCUSSION

Within the framework of inference {%, v, B, wg; v nontracial} we have
constructed a unique entropy function characterizing the coarse-grained state
as the maximum entropy state.

If A = B(H) and v the trace 7, then every w e F(2) can be written as
w(Ad) = (W A). In this case our entropy is

H(T) = o(T) = (VW)
and differs from the standard entropy
(W) = —=(Wlog W)

For our inference they are, however, equivalent since they lead to the same
maximum entropy states. On the other hand, the straightforward extension®

B(T) = —o(T?log T?)

of the standard entropy to the case where v is nontracial does not characterize
(38, v) inference.®
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